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a  b  s  t  r  a  c  t

CD8  T cells  play  a  critical  role in several  pathological  conditions  affecting  the  liver,  most  notably  viral
hepatitis.  Accordingly,  understanding  the  mechanisms  that  modulate  the  intrahepatic  recruitment  of  CD8
T cells  is  of  paramount  importance.  Some  of  the  rules  governing  the  behavior  of  these  cells  in the  liver have
been characterized  at the  population  level,  or have  been  inferred  by studying  the  intrahepatic  behavior
of  other  leukocyte  subpopulations.  In  contrast  to  most  microvascular  beds where  leukocyte  adhesion
is  restricted  to  the endothelium  of  post-capillary  venules,  it  is now  becoming  clear that  in the  liver
leukocytes,  including  CD8  T  cells,  can  efficiently  interact  with  the endothelium  of  hepatic  capillaries  (i.e.
the sinusoids).  While  physical  trapping  has  been  proposed  to play  an  important  role in  leukocyte  adhesion
to  hepatic  sinusoids,  there  is mounting  evidence  that  T cell recruitment  to  the  liver is  highly  regulated
and  depends  on recruitment  signals  that  are  either  constitutive  or induced  by inflammation.  We  review
epatocellular carcinoma
latelets
electins
ntegrins
hemokines

here several  specific  adhesive  mechanisms  that have been  shown  to  regulate  CD8  T cell  trafficking  within
the liver,  as  well  as  highlight  recent  data  that  establish  platelets  as key  cellular  regulators  of intrahepatic
CD8  T cell  accumulation.

© 2012 Elsevier Ltd. All rights reserved.
AP-1
D44

. Introduction

CD8 T cells play a fundamental role in the pathogenesis of liver
isease and viral clearance during acute, self-limited hepatitis B
irus (HBV) and hepatitis C virus (HCV) infection (Guidotti and
hisari, 2006; Iannacone et al., 2006). Moreover, the pathogenesis
f chronic HBV or HCV infection is thought to involve functionally
nefficient CD8 T cells that do not eradicate the infection but sus-
ain repetitive cycles of immune-mediated hepatocellular necrosis,
Please cite this article in press as: Guidotti, L.G., Iannacone, M., Effect
http://dx.doi.org/10.1016/j.molimm.2012.10.032

epatocellular regeneration and inflammation that are likely to
recipitate random genetic damage and promote HCC develop-
ent (Guidotti and Chisari, 2006). Both CD8 T cells’ defensive and

Abbreviations: HBV, hepatitis B virus; HCV, hepatitis C virus; HCC, hepatocellular
arcinoma; Ag, antigen; VCAM-1, vascular cell adhesion molecule 1; ICAM-1, inter-
ellular adhesion molecule 1; fMLP, N-formyl-methionyl-leucyl-phenylalanine;
SECs, liver sinusoidal endothelial cells; LCMV, lymphocytic choriomeningitis virus;
gSF, immunoglobulin superfamily; VLA-4, very late antigen 4; MAdCAM-1, mucosal
ddressin cell adhesion molecule 1; LFA-1, lymphocyte function-associated anti-
en  1; LAD-1, leukocyte adhesion deficiency type 1; TCR, T cell receptor; PECAM-1,
latelet endothelial cell adhesion molecule 1; IFN, interferon; NK, natural killer;

L, interleukin; VAP, vascular adhesion protein; Th, T helper; PG, prostaglandin; TX,
hromboxane; ADP, adenosine diphosphate; GP, glycoprotein; vWF, von Willebrand
actor; PSGL-1, P-selectin glycoprotein ligand 1.
∗ Corresponding author. Tel.: +39 02 2643 6359; fax: +39 02 2643 6822.

E-mail address: matteo.iannacone@hsr.it (M.  Iannacone).

161-5890/$ – see front matter ©  2012 Elsevier Ltd. All rights reserved.
ttp://dx.doi.org/10.1016/j.molimm.2012.10.032
destructive functions are mediated by antigen (Ag)-experienced
effector cells and depend on these cells’ ability to migrate from
the blood to the liver. Understanding the signals that modulate the
intrahepatic recruitment of CD8 T cells is therefore critical to get
insight into the pathogenesis of acute and chronic viral hepatitis.

The classic paradigm for leukocyte migration from blood ves-
sels to interstitial tissues involves a multistep process that occurs
in post-capillary venules (Springer, 1994) but not in arterioles
or capillaries (where leukocyte adhesion may limit gas exchange
and tissue perfusion, Andrian and Mackay, 2000). The initial weak
rolling interactions between leukocytes and endothelial cells are
mediated by a family of proteins called selectins (Kansas, 1996).
There are three types of selectins: one expressed on leukocytes
(L-selectin), one on endothelial cells (E-selectin), and one on
platelets and on endothelial cells (P-selectin). The ligands for
selectins are sialylated oligosaccharides bound to mucin-like gly-
coprotein backbones (Kansas, 1996). Firm adhesion of leukocytes
to endothelial cells is mediated by a family of heterodimeric
leukocyte surface proteins called integrins (Hynes, 1992; Springer,
1994). The combination of cytokine-induced endothelial expres-
sion of integrin ligands, mainly vascular cell adhesion molecule
or CD8 T cell trafficking within the liver. Mol. Immunol. (2012),

1 (VCAM-1) and intercellular adhesion molecule 1 (ICAM-1), and
chemokine-mediated conversion of integrins to a high-affinity
state on leukocytes (Hynes, 2002) results in firm adhesion of leuko-
cytes to the endothelium at sites of inflammation.

dx.doi.org/10.1016/j.molimm.2012.10.032
dx.doi.org/10.1016/j.molimm.2012.10.032
http://www.sciencedirect.com/science/journal/01615890
http://www.elsevier.com/locate/molimm
mailto:matteo.iannacone@hsr.it
dx.doi.org/10.1016/j.molimm.2012.10.032
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additional adhesion molecules are expressed (Crispe, 2012). Of
particular interest is MAdCAM-1, which engages the �4�7 inte-
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The liver represents an exception to this leukocyte migration
aradigm in several respects (Lee and Kubes, 2008). First, leuko-
yte adhesion is not restricted to the endothelium of post-capillary
enules, but it also occurs in sinusoids (Lee and Kubes, 2008);
ndeed, in response to a chemotactic stimulus such as N-formyl-

ethionyl-leucyl-phenylalanine (fMLP), the majority of leukocytes
ave been shown to adhere to the sinusoidal bed, with only a small

raction of leukocytes adhering to post-sinusoidal venules (Wong
t al., 1997). It is of note, however, that the quantitative importance
f sinusoidal adhesion is less established for CD8 T cells, particularly
n the context of intrahepatic Ag recognition. Second, visualiza-
ion of leukocyte behavior in the liver microvasculature revealed
hat while in post-sinusoidal vessels rolling precedes adhesion,
eukocyte adhesion to liver sinusoidal endothelial cells (LSECs)
ften occurs independent of any notable rolling (Lee and Kubes,
008). It is also of note that LSEC are morphologically unique and
haracterized by the absence of tight junctions between cells and
he lack of a basal membrane (Wisse et al., 1985). This is in con-
rast to most vascular beds in other tissues and organs, where a
ontinuous endothelial cell layer and a basement membrane physi-
ally separate parenchymal cells from circulating leukocytes (Wisse
t al., 1985). Moreover, hepatocyte membranes often protrude from
he fenestrated endothelial barrier of sinusoids, thus providing
he opportunity for direct interaction of circulating cells with the
nderlying hepatocytes (Warren et al., 2006). For all these reasons,
he molecular mechanisms leading to leukocyte adhesion to LSEC
ppear to be somewhat different from those occurring in post-
apillary venules of other vascular districts (Lee and Kubes, 2008).

e will review below our current understanding of the molecular
nd cellular mechanisms mediating CD8 T cell homing to the liver,
ocusing, when possible, on effector CD8 T cell trafficking in the
ontext of Ag recognition.

. Selectins

A mentioned earlier, the selectin family has three members:
-selectin (CD62L), E-selectin (CD62E) and P-selectin (CD62P).
electins are the quintessential adhesion molecules: they are highly
fficient mediators of tethering and rolling (Kansas, 1996), and they
o so constitutively, i.e. they do not require an activating stim-
lus to bind to a carbohydrate ligand through their N-terminal,
a2+-dependent lectin domain. The role of selectins in leukocyte
ecruitment into organs such as lymph nodes, peritoneal cavity,
esentery, muscle and skin has been extremely well characterized

Lee and Kubes, 2008).
Consistently with the idea that leukocyte adhesion to LSEC

ccurs independently of any notable rolling (see above), selectins
ere shown to be dispensable for leukocyte adhesion in liver

inusoids (Wong et al., 1997; Essani et al., 1998; Fox-Robichaud
nd Kubes, 2000; Bowen et al., 2004). Similarly, migration of
irus-specific CD8 T cells to lymphocytic choriomeningitis virus
LCMV)-infected liver was shown to occur in the absence of
ndothelial (E/P) selectins (Bartholdy et al., 2000).

. Integrins

Integrins are a large family of heterodimeric glycoproteins
Hynes, 1992, 2002; Springer, 1994) that are found on most cell
ypes. Two subfamilies are most important for leukocyte migration:
he �4-(CD49) and the �2-(CD18) integrins. Endothelial ligands for
hese molecules are members of the immunoglobulin superfamily
Please cite this article in press as: Guidotti, L.G., Iannacone, M., Effect
http://dx.doi.org/10.1016/j.molimm.2012.10.032

IgSF). Arguably, the most important ligand for �2-integrins is
he IgSF member ICAM-1. In most vascular districts ICAM-1
s constitutively expressed on post-capillary venules and only

inimally on capillaries; by contrast, the density of ICAM-1 in
 PRESS
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hepatic sinusoids is comparable to that of central venules (Iigo
et al., 1997). The IgSF member VCAM-1 (the ligand for the �4-
integrin VLA-4) is not expressed in normal liver tissue but it is
markedly upregulated on sinusoidal endothelium when inflam-
mation is present (Volpes et al., 1992). During some inflammatory
conditions the hepatic endothelium can be induced to also express
the mucosal addressin cell adhesion molecule-1 (MAdCAM-1;
the ligand for �4�7), which is normally confined to mucosal
endothelium in the bowel (see later).

An important feature of integrins is their “tunability” (Hynes,
2002). While selectins are always active, integrins must first
assume an activated state to mediate adhesion and their affinity
and/or avidity towards the respective ligands can be rapidly modi-
fied in response to stimuli such as chemokines (see later). We  will
review below our current understanding of the role that specific
integrins play in the recruitment of CD8 T cells to both uninflamed
and inflamed liver microvasculature.

3.1. ˇ2-Integrins

The leucocyte-restricted �2-integrins comprise four members,
namely �L�2 (LFA-1), �M�2 (Mac-1), �x�2 (p150, 95) and �D�2.
Each of the four known �2-integrin heterodimers has a differ-
ent cellular distribution, with LFA-1 expressed on all leukocytes,
including CD8 T cells (Luo et al., 2007; Tan, 2012). The absence
of �2-integrins in humans results in leukocyte adhesion defi-
ciency type 1 (LAD-1), a syndrome that manifests itself with
increased susceptibility to infections and impaired capacity of
wound healing (Anderson and Springer, 1987). �2-Integrin knock-
out mice have a phenotype similar to that of LAD-1 patients,
and leukocytes derived from these animals show diminished abil-
ity to extravasate at sites of infection or injury (Grabbe et al.,
2002).

Although it is now well appreciated that �2-integrin mediates
firm adhesion of leukocytes in many tissues, the evidence for a role
for this integrin in the liver is less compelling (Lee and Kubes, 2008).
LFA-1 has been proposed to mediate both naïve (Bertolino et al.,
2005) and effector (John and Crispe, 2004; Sato et al., 2006) CD8 T
cell adhesion to LSEC, but this may  occur only in the context of anti-
gen presentation in the liver, possibly because of a TCR-mediated
increase in LFA-1 affinity for ICAM-1.

3.2. ˛4-Integrins

The �4-integrin family includes �4�1 (VLA-4) and �4�7, two
molecules that are expressed on lymphocytes and monocytes
(Springer, 1994). VLA-4 and �4�7 bind to VCAM-1 and MAdCAM-
1, respectively, on endothelial cells, and this process regulates the
trafficking of different leukocyte subsets in mucosal tissues, espe-
cially the gut (Springer, 1994).

Antigen non-specific adhesion of activated CD8 T cells to LSEC
has been proposed to occur via VCAM-1/�4-integrin (John and
Crispe, 2004). In a graft versus host disease model, however,
�4-integrin was found to be dispensable for the recruitment of
activated CD8+ T cells into the liver (Sato et al., 2006). Also, naïve
CD8 T cells appear not to need �4-integrin to be recruited to the
uninflamed liver (Bertolino et al., 2005).

As mentioned earlier, when the hepatic vasculature is inflamed,
or CD8 T cell trafficking within the liver. Mol. Immunol. (2012),

grin that is prominently expressed on intestinal lymphocytes. This
interaction might account for the hepatic trapping of activated
gut-derived T cells in inflammatory bowel disease (Grant et al.,
2001).

dx.doi.org/10.1016/j.molimm.2012.10.032
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.3. ˛Vˇ3

Activated lymphocytes express the integrin �V�3, which binds
everal extracellular matrix molecules and PECAM-1 (CD31), an
gSF molecule that has been implicated in leukocyte migration
cross endothelial cells (Muller et al., 1993). Although the role of
V�3 in CD8 T cell trafficking to the liver has never been tested,

n vivo blockade of this molecule via specific antibodies had no
ffect on hepatic neutrophil accumulation (Chosay et al., 1998).
his is consistent with the observation that LSEC express little or
o PECAM-1 (Chosay et al., 1998).

. Chemokines

Chemokines (chemotactic cytokines) are secreted polypeptides
hat bind to surface receptors and transmit signals through G�i
roteins (Rot and Andrian, 2004). Just like adhesion molecules,
hemokine receptors can be upregulated or lost as cells dif-
erentiate, allowing leukocytes to coordinate migratory routes
nd biological function (Rot and Andrian, 2004). After secretion
nto extracellular spaces, chemokines bind to heparin-like gly-
osaminoglycans on cell surfaces and in the extracellular matrix;
eukocytes can track down these immobilized chemokines, which

ay  persist in tissues longer and at higher concentrations than
reely diffusible molecules. Since lymphocytes must be positioned
orrectly to interact with other cells, the pattern of chemokine
eceptors and the type and distribution of chemokines in tissues
ritically influence immune responses (Rot and Andrian, 2004).

The chemokine molecular signature includes four conserved
ysteine residues that form two disulfide bonds pairing the first
ith the third and the second with the fourth cysteines (Zlotnik

nd Yoshie, 2012). Based on the arrangement of the N-terminal
wo cysteine residues, chemokines are grouped into four subfam-
lies: CXC, CC, (X)C, and CX3C. In the CXC chemokines, one amino
cid separates the first two cysteines, whereas in CC chemokines,
hese two cysteines are adjacent. A single member of the CX3C sub-
amily, CX3CL1 or fractalkine, has three amino acids between the
wo cysteines, whereas the first and third cysteines are missing in
he (X)C subfamily (Zlotnik and Yoshie, 2012).

Several lines of evidence from human studies suggest that the
ntrahepatic recruitment of CD8 T cells and other inflammatory
ells may  be promoted by chemokines. Most effector T cells infil-
rating the chronically inflamed human liver express high levels of
XCR3, CXCR6, CCR1 and CCR5 (Shields et al., 1999; Kunkel et al.,
002; Boisvert et al., 2003; Leroy et al., 2003; Heydtmann et al.,
006; Dumoulin et al., 1997; Apolinario et al., 2002; Arai et al.,
002; Diago et al., 2006; Larrubia et al., 2007), with CCR5-bearing T
ells preferentially accumulating around portal tracts and CXCR3-
earing T cells distributing more evenly throughout the liver lobule
Murai et al., 1999; Harvey et al., 2003; Curbishley et al., 2005). We
eview below examples of specific chemokine/chemokine receptor
nteractions that appear to be predominant at mediating CD8 T cell
ecruitment into the liver.

.1. CXCR3 and its ligands CXCL9, CXCL10 and CXCL11

Using flow-based adhesion assays it has been shown that the
XCR3 ligands CXCL9, CXCL10 and CXCL11 are important not only

n adhesion, but also in transmigration of human effector T lympho-
ytes through the hepatic endothelium (Curbishley et al., 2005).
dditional evidence for a role of CXCR3 and its ligands in liver T
Please cite this article in press as: Guidotti, L.G., Iannacone, M., Effect
http://dx.doi.org/10.1016/j.molimm.2012.10.032

ell trafficking comes from studies in which HBV-replication com-
etent transgenic mice were used as recipients of HBV-specific
ffector CD8 T cells. In those studies it was shown that CXCL9
nd CXCL10 are rapidly and strongly induced in the liver after T
 PRESS
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cell transfer (Kakimi et al., 2001); the transferred T cells produce
neither chemokine but, rather, they activate (via the secretion of
IFN-�) liver non-parenchymal cells and especially hepatocytes to
produce them (Kakimi et al., 2001); importantly, blocking CXCL9
and CXCL10 in vivo reduces the recruitment of host-derived mono-
nuclear cells into the liver, particularly those subsets that are
known to express CXCR3 (NK cells, myeloid dendritic cells and
effector CD8 T cells) (Kakimi et al., 2001). It is also important to
note that CXCL9 and CXCL10 neutralization only partially reduces
the recruitment of virus-specific effector CD8 T cells (Kakimi et al.,
2001), suggesting that other receptor/ligand pairs play a role in the
intrahepatic recruitment of these cells.

4.2. CXCR6 and its ligand CXCL16

Both human (Heydtmann et al., 2005) and mouse (Sato et al.,
2005) studies have shown that CXCR6/CXCL16 can regulate the
recruitment of activated CD8 T cells to the inflamed liver. Along
these lines, Klenerman and colleagues have recently reported a
unique subset of HCV-specific CXCR6+ liver-inflitrating CD8 T cells
that express the C-type lectin CD161 and secrete IL-17 and IFN-
� (Northfield et al., 2008). Of note, CXCR6 was also shown to be
required for the hepatic homing of NK and NKT cells (Geissmann
et al., 2005).

4.3. CCR5 and its ligand CCL3

In murine models of graft-versus-host disease CCR5 and CCL3
have been shown to support effector CD8 T cell recruitment to
portal tracts (Murai et al., 1999, 2003).

4.4. CCR9 and its ligand CCL25

During primary sclerosing cholangitis, a chronic inflammatory
liver disease characterized by progressive bile duct destruction
and developing as an extra-intestinal complication of inflamma-
tory bowel disease, liver-infiltrating lymphocytes include CCR9+
mucosal T cells (Eksteen et al., 2004). It has been suggested that
the hepatic recruitment of CCR9+ T cells depends on the aberrant
liver expression of the gut-specific chemokine CCL25 (Eksteen et al.,
2004).

5. Other adhesion molecules (VAP-1, CD44)

5.1. VAP-1

VAP-1 is a 170-kDa homodimeric glycoprotein that is expressed
by endothelial cells and mediates lymphocyte binding to high
endothelial venules under shear conditions (Salmi and Jalkanen,
1996; Salmi et al., 1997). VAP-1 is expressed at high levels in the
human liver and it promotes lymphocyte adhesion and transmi-
gration across hepatic sinusoidal endothelial cells in vitro (Lalor
et al., 2002). In humans, LSEC have been shown to constitutively
express VAP-1 and to up-regulate this protein during inflamma-
tory responses (McNab et al., 1996). In mice, LSEC express very little
VAP-1 under basal conditions, but they do significantly express it
when inflammation is present (Bonder et al., 2005).

Although CD4 T cells polarized to a Th2 phenotype have been
shown to require VAP-1 for efficient homing to the inflamed liver
(Bonder et al., 2005), CD8 T cell recruitment into the liver has
been shown to be independent of VAP-1 (Bertolino et al., 2005).
Of note, the ligand for VAP-1 remains to be identified, but it has
or CD8 T cell trafficking within the liver. Mol. Immunol. (2012),

been postulated that, upon activation, this glycoprotein leads to the
upregulation of E-selectin, ICAM-1 and VCAM-1 on LSEC and the
secretion of CXCL8, thus supporting leukocyte homing indirectly
(Lalor et al., 2007).

dx.doi.org/10.1016/j.molimm.2012.10.032
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.2. CD44

Interaction of CD44 with sinusoid-expressed hyaluronan has
een recently proposed to be the dominant mechanism for neu-
rophil sequestration in inflamed liver sinusoids (Mcdonald et al.,
008). Antigen-experienced CD8 T cells are known to express high

evels of CD44, but whether this molecule can also support lym-
hocyte adhesion to hepatic sinusoids is yet to be defined.

. Kupffer cells and platelets

So far we discussed molecular interactions between CD8 T cells
nd the sinusoidal endothelium that have been shown to regu-
ate T cell trafficking to the liver. Lymphocytes and endothelial
ells, however, exist in a complex multi-cellular microenvironment
here other cells types might influence their behavior via paracrine

nteraction. One example of this is provided by Kupffer cells, liver-
esident intravascular macrophages. Although Kupffer cells can
ransiently interact with T cells (Bertolino et al., 2002), their con-
ribution to the intrahepatic accumulation of effector CD8 T cells
as shown to be negligible (Sitia et al., 2011). Another example is
rovided by platelets, anucleated blood cells that have been shown
o interact with leukocytes and modulate their function (Ruggeri,
009; Vieira-de-Abreu et al., 2012).

Several recent studies have demonstrated that intrahepatic
ecruitment of antigen-specific effector CD8 T cells is critically
ependent on platelets (Iannacone et al., 2005, 2007a,b; Lang
t al., 2008; Iannacone et al., 2009; Sitia et al., 2012). Indeed, in
ouse models of CD8 T cell-mediated acute viral hepatitis, we

ecently showed that platelet depletion is associated with a pro-
ound reduction in the intrahepatic accumulation of virus-specific
ffector CD8 T cells and a proportional reduction in liver disease
everity, both of which are restored upon reconstitution with nor-
al  platelets, but not upon reconstitution with platelets treated
ith prostaglandin (PG)E1, a known inhibitor of platelet activation

Iannacone et al., 2005). In vitro findings also indicate that, under
he low shear flow conditions likely occurring in the venous cir-
ulation of the liver, antigen-specific effector CD8 T cells tightly
nteract with platelets and, again, this process is inhibited when
latelets are treated with PGE1 (Iannacone et al., 2005). In the ongo-

ng effort to explain mechanistically why platelets are required to
upport CD8+ T cell-induced liver pathology, we  also found that
his process is influenced by two specific inhibitors of platelet
ctivation pathways, aspirin that blocks thromboxane (TX) A2
roduction and clopidogrel that blocks the P2Y12 ADP receptor
Cattaneo, 2004). Indeed, treating mice with aspirin, clopidogrel,
r a combination of the two, attenuates acute liver injury by reduc-
ng the hepatic accumulation of antigen-specific CD8+ T cells and
ntigen-nonspecific inflammatory cells (Iannacone et al., 2007a).  Of
ote, platelet activation follows adhesion to activated endothelium
nd/or exposed subendothelial matrix and is mediated primarily
y two receptors, GPIb-�  and GPVI, which bind to von Willebrand
actor (vWF) and collagen, respectively (Ruggeri, 2002). Platelet
ctivation induces cytoskeletal assembly and shape changes, secre-
ion of agonists promoting further activation and aggregation, and
unctional expression of molecules such as P-selectin or GPIIbI-
Ia (Weyrich and Zimmerman, 2004) that could be involved in the
nteraction with effector CD8 T cells. Pertinent to this, platelet P-
electin has been shown to interact with PSGL-1 on leukocytes
including T cells) and promote their rolling along the endothe-
ium of lymph nodes (Diacovo et al., 1996). Upon interaction with
latelets, leukocytes are also thought to roll on the endothelium of
Please cite this article in press as: Guidotti, L.G., Iannacone, M., Effect
http://dx.doi.org/10.1016/j.molimm.2012.10.032

utaneous post-capillary venules thanks to platelet expression of
PIIbIIIa, which may  secondarily interact with endothelial ICAM-

 (Ludwig et al., 2004). Along these lines, intravital microscopy
tudies in mesenteric venules have recently suggested that, after
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directly supporting an initial rolling of leukocytes in a P-selectin-
dependent manner, platelets stimulate endothelial cells to become
activated, express P-selectin themselves, and further sustain leuko-
cyte rolling (Dole et al., 2005). Based on the aforementioned
evidence, it is possible that the expression of P-selectin or GPIIbIIIa
on platelets and PSGL-1 on effector CD8 T cells (Borges et al., 1997)
may  promote interaction between these cell types.

If a functional connection between platelets and T cells depends
on direct and/or indirect intercellular interactions within the liver
remains to be demonstrated. We  have proposed that the activation-
dependent expression of platelet CD40 ligand contributes to the
expansion phase of virus-specific CD8+ T cells, resulting in their
accumulation at sites of infection (Iannacone et al., 2008); this effect
may  reflect direct interaction of activated platelets with CD8+ T
cells that express CD40 (Bourgeois et al., 2002; Meunier et al., 2012).
Others have indicated that platelet CD40 ligand has the potential
to enhance virus-specific CD8+ T cell responses indirectly, mostly
by promoting the maturation of dendritic cells (Elzey et al., 2003;
Li, 2008).

While the exact molecular mechanisms by which platelets
support CD8 T cell-mediated liver immunopathology remains
ill-defined, we recently adapted a mouse model of chronic immune-
mediated hepatitis B that progresses to HCC (Nakamoto et al., 1998,
2004) to evaluate whether aspirin and clopidogrel may also blunt
the hepatic accumulation of pathogenic effector CD8 T cells under
conditions of sustained liver injury. We  were able to show that anti-
platelet therapy suppresses hepatic immunopathology overtime,
thus preventing/delaying the development of HCC and improving
overall survival (Sitia et al., 2012).

7. Conclusions and future directions

Significant advances have been made in our comprehension of
hepatic CD8 T cell recruitment, how it differs from the recruitment
of these cells to other tissues or organs and how the process is
modulated by inflammation. While some of the rules that govern
CD8 T cell homing to the liver have started to be clarified at the
population level, we still have limited knowledge of the precise
dynamics of intrahepatic CD8 T cell migration and interaction with
other cell types at the single-cell level, particularly in the context of
intrahepatic antigen recognition. We  believe that recent advances
in the field of live imaging, coupled with animal models that express
viral antigens in the hepatocyte, will provide the opportunity to
tackle some of these questions directly in the living animal. This will
not only greatly improve our understanding of CD8 T cell trafficking
within the liver but it may  also provide tools for the design of new
immune therapeutic strategies for the treatment of chronic viral
hepatitis and liver cancer.
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